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Abstract

Data augmentation is often used as a strategy to improve the diversity of training
data for machine learning systems. While standard augmentation techniques (such
as translation and flipping) help neural networks to generalize over spatial trans-
formations, more nuanced techniques would be required to capture semantically
different variations in data. We propose a new data augmentation method that
relies on the use of attribute-conditioned generative models to modify the semantic
properties of existing training data. We show that such data augmentation improves
the generalization capability of deep classifiers by analyzing their performance on
datasets of traffic objects that are captured (i) at different times of the day and (ii)
across different weather conditions.

1 Introduction

Perception systems for autonomous vehicles are built around deep neural networks that analyze
images to detect and classify objects of importance. Such neural networks generally require massive
amounts of diverse training data, required to be representative of various environmental conditions
comprising of adverse illumination and weather conditions. While data augmentation based on affine
transformations is often used to improve variety and correct for data imbalance, such techniques
seldom capture semantically meaningful variations. Specifically, for traffic scenes, images captured
in clear daylight conditions dominate in the training data as compared to those representing adverse
conditions such as night-time and rough weather effects. Such imbalance in training data leads to poor
generalization for classification or detection models. On the other hand, collection and annotation of
such diverse traffic data can be resource-intensive and expensive.

To address this problem, we propose a novel data augmentation method that leverages special
attribute-conditioned generative models to transform images under modifiable attributes such as
illumination due to daylight or weather conditions. These attribute generative models such as an
Attribute GAN (AttGAN) [9] are capable of reconstructing an input image into a modified version
of itself with a desired attribute. These generative models allow for fine-grained control over the
attribute space and generate semantically valid synthetic representation of true data.

In order to measure the efficacy of our “semantic” data augmentation, we analyze the performance
of traffic object classifiers based on the ResNet [8] and MobileNet [11] architectures and show
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Figure 1: The original and the corresponding synthetic images generated from the AttGAN [9]. The
first and third columns depict the original images. The second column depicts reconstructed images
with flipped night attribute. The fourth column depicts the reconstructed images with flipped snow
mask attribute.

significant improvements in class-wise F1 scores for BDD++ [19] with day/night and clear/snow
images.

2 Related Work

Data augmentation for autonomous driving research has been studied with great detail and there has
been several recent work. Driving datasets generally are of two types: synthetically generated traffic
scenes and real-world data. Synthetic data generation relies on the use of graphics engines [4, 21]
and games [20]. CARLA [4] uses the UNITY game engine to simulate traffic behaviour and generate
high fidelity data. The Synthia dataset [21] is another dataset built along the same lines with rendered
city scenes and corresponding segmentation masks. Datasets such as KITTI [6], CamVID [5], Oxford
Robotcar [18], Waymo [1], Lyft [13] and Berkeley Deep Drive (BDD) [26] present large scale real
world data for semantic segmentation, scene recognition and motion propagation. Our approach
enables augmentation of any of these datasets using a generative model trained to transform input
images under various attributes.

DeepTest [24] introduces an automated testing framework for DNNs used for autonomous driving
by generating affine transformations of images under illumination and weather conditions. Deep-
Road [27] improves upon the results using GAN-generated images under snowy and rainy conditions
based on the framework of [15]. CyCADA [10] and UNIT [28] ensure semantic constraints on the
real and generated images through cyclic consistency loss.

Dai et al.[3] introduces a novel method to add synthetic fog of variable densities to real clear weather
scenes using semi-supervised learning. Sakaridis et al.[22] augment the original Cityscapes dataset[2]
with synthetic fog. Sakaridis et al.[23] focuses on the problem of semantic segmentation on nighttime
images providing a novel pipeline to gradually transfer daytime images to nighttime images. Lore
et al. [17] adaptively brightens images by learning semantic features in low light conditions using a
deep autoencoder. Sakaridis et al.[23] provides a novel pipeline to gradually transfer daytime images
to nighttime images based on segmentation masks. Huang et al. [12] uses a GAN generated images
to robustify detectors.

Generative Adversarial Networks (GAN) [7] are popularly used as a method to generate samples
from real world image distributions. Fader Networks [14] and Attribute GANs et al. [9] extend
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Tested on night-time images Tested on daytime images

Setting Labels Precision Recall F1-Score Precision Recall F1-Score

Trained on day
images

car 0.95 0.85 0.89 0.97 0.93 0.95
person 0.49 0.86 0.63 0.81 0.91 0.86
traffic light 0.40 0.68 0.50 0.58 0.90 0.70
traffic sign 0.82 0.76 0.78 0.92 0.85 0.89

Trained on day
and night images

car 0.96 0.90 0.93 0.96 0.89 0.93
person 0.52 0.88 0.66 0.65 0.93 0.77
traffic light 0.57 0.85 0.68 0.57 0.88 0.69
traffic sign 0.91 0.81 0.82 0.90 0.81 0.85

Semantic domain
adaptation: Day

and synthetic
night images

car 0.97 0.87 0.92 0.98 0.96 0.97
person 0.68 0.88 0.77 0.89 0.93 0.91
traffic light 0.52 0.62 0.57 0.72 0.86 0.78
traffic sign 0.79 0.90 0.86 0.94 0.91 0.92

Table 1: Performance of ResNet 34 classification model trained under three different settings on
Night and Day Images. The F1-score values represent the performances of these deep classifiers
under the two conditions; higher the F1-score, the better is the model. Observe that the model trained
on original day and synthetic night images outperforms the model trained only on day images for all
four classes under both test sets. This model shows comparable performance to that of the model
trained with original day and night images from the dataset for cars, outperforms on persons and
traffic signs but under-performs on traffic lights.

this to generate facial images with specific attributes which are provided as conditional inputs to
autoencoders. The concept of using generative models to create synthetic data for autonomous driving
tasks is not new. Uricár et al. [25] presents a comprehensive survey of advanced data augmentation
techniques using GANs.

Our approach uses AttGANs, a specific attribute-controlled generative model to modify environmental
attributes of input data. Specifically, we change the time-of-day attribute for traffic scenes using an
AttGAN trained on a processed version of the BDD dataset.

3 Semantic Domain Adaptation

3.1 Preprocessing

For training the AttGAN, we use a sub-sampled version of the BDD++ dataset [19] where we consider
original images of the following four classes: cars, traffic signs, traffic lights, and persons. We make
these image crops conditioned on the time of the day labels as well as on different weather labels. We
select these four object classes to create a balanced training dataset since number of image crops of
other categories such as buses and trucks across the dataset are comparatively much less than that of
other classes. This creates an imbalance in data which results in improper training of deep generative
as well as classification and detection models.

3.2 Training the Generative model

We train two different AttGAN[9] models to generate synthetic datasets to train the classification
networks. We train one such attribute model on day and night attributes on the cropped image training
dataset and infer on the test and validation datasets. We can see that the attribute-controlled generative
model is successful in flipping the attributes of the validation and test image crops. Given an image
crop with the “day” attribute, the model can flip the image to the desired “night setting”.

To train an AttGAN to simulate snowy occlusion effects on the image crops, we use additional
synthetic images generated by DesnowNet [16] along with original images from the BDD Dataset.
This is to compensate for the insufficient amount of original “snow” images in BDD [26]. We
condition the generative model to learn this snow occlusion mask and transform images with any
weather attribute to exhibit snowy precipitation effects.

3.3 Data Augmentation Strategy

We train ResNet classifiers on the four classes mentioned above on training datasets augmented
with semantically transformed images. For generating additional training examples, we use the

3



Tested on original snowy images Tested on synthetic snowy images

Setting Labels Precision Recall F1-Score Precision Recall F1-Score

Trained
on clear
images

car 0.86 0.85 0.86 0.87 0.85 0.85
person 0.64 0.79 0.71 0.52 0.59 0.56
traffic light 0.61 0.65 0.63 0.57 0.55 0.56
traffic sign 0.77 0.67 0.71 0.65 0.64 0.65

Trained
on clear

and snow
images

car 0.89 0.91 0.90 0.89 0.92 0.91
person 0.76 0.82 0.78 0.68 0.66 0.66
traffic light 0.64 0.70 0.67 0.57 0.61 0.59
traffic sign 0.85 0.73 0.69 0.79 0.70 0.75

Trained on
clear and
synthetic

snow images

car 0.95 0.92 0.94 0.96 0.95 0.96
person 0.76 0.92 0.83 0.76 0.91 0.83
traffic light 0.85 0.87 0.86 0.83 0.82 0.82
traffic sign 0.92 0.86 0.89 0.90 0.86 0.88

Table 2: Performance of ResNet-34 classification model trained under three different settings on
snow and clear Images. The F1-score values represent the performances of these deep classifiers
under the two conditions; higher the F1-score, the better is the model. Observe that the model trained
on original clear and synthetic snow images outperforms the models trained on original images across
all four object classes.

pretrained AttGANs to flip the benign attribute (day) to the corresponding adverse attribute (night).
We consider two examples of adverse attributes: night-time and snow. We train three separate ResNet-
34 [8] models with three different settings: (1) original day/clear images (2) original day/clear
and night/snowy images and (3) original day/clear and synthetic night/snowy images. We test the
performances of these classifiers on the four selected classes over shift from day to night and from
non-snowy to snowy images.

We transform images with other weather labels (foggy and overcast) from the original dataset instead
of clear images to add variety to the training data. For the third setting, we choose only one of the
original or synthetic image for training. However, we include the flipped versions in the validation
dataset. We also avoid using the original adverse condition images to test the efficacy of our approach.

The models trained on the two categories are then tested on an unseen test set sampled from the
original images2. In order to test the efficacy of our augmentation approach, we analyse classifier
performance individually on adverse and non-adverse subsets of our test set. For our augmentation
strategy to be successful, it should improve classifier performance on the adverse subset while
preserving (improving) the same on benign images. We analyse the class-wise precision, recall and
F1 scores, to ensure that the inherent class imbalance does not skew the results.

Results. From Tables 1 and 2, we observe that our GAN based data augmentation strategy is
successful at improving classifier performance in adverse settings. Table 1 demonstrates that our
approach is able to preserve performance on benign examples. Also note, setting (2) in Table 2
shows that a model trained on the original dataset shows comparable performance on synthetic
images. We therefore infer that the our transformation produces realistic images as compared to
that of the original data. Additionally, comparing the performance across the three settings shows
a significant performance boost for all classes. Our approach therefore allows for semantically
augmenting under-represented classes to improve performance.

4 Discussion and Conclusion

We have shown that semantic data augmentation is a viable approach to tackle the lack of data diversity.
Especially for autonomous vehicles, our approach can compensate for the dearth of data captured
under adverse conditions. Our analysis of semantic domain adaptation demonstrates promising results
for deep classifiers. Additional experiments, however, are required to test the effects of such data
augmentation on detectors, segmentation networks and multi-modal networks. We defer this analysis
to future work. Additionally, while we show experiments for AttGANs, that are limited to size

2The test images are created to validate the robustness of the models under shift from day/clear to night/snowy.
During training, we create separate validation and test sets as per the training distribution of that particular
model.
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constraints, our approach can be extended to better and more sophisticated generative models such as
Progressive GANs.
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A Additional Results

Tested on night-time images Tested on daytime images

Setting Labels Precision Recall F1-Score Precision Recall F1-Score

Trained on day
images

car 0.83 0.71 0.76 0.81 0.64 0.72
person 0.43 0.65 0.52 0.25 0.58 0.35
traffic light 0.23 0.52 0.32 0.20 0.38 0.27
traffic sign 0.63 0.58 0.60 0.57 0.57 0.56

Trained on day
and night images

car 0.83 0.64 0.73 0.84 0.64 0.72
person 0.38 0.54 0.45 0.24 0.51 0.32
traffic light 0.20 0.57 0.29 0.23 0.52 0.32
traffic sign 0.57 0.56 0.57 0.59 0.58 0.59

Semantic domain
adaptation: Day

and synthetic
night images

car 0.86 0.81 0.83 0.84 0.74 0.78
person 0.53 0.64 0.65 0.35 0.76 0.48
traffic light 0.38 0.59 0.46 0.30 0.46 0.37
traffic sign 0.77 0.61 0.68 0.67 0.61 0.65

Table 3: Performance of MobileNetV2 classification model trained under three different settings on
Night and Day Images. The F1-score values represent the performances of these deep classifiers
under the two conditions; higher the F1-score, the better is the model. Observe that the model trained
on original day and synthetic night images outperforms the model trained only on original day and
night images for all four classes under both test sets.

Tested on original snowy images Tested on synthetic snowy images

Setting Labels Precision Recall F1-Score Precision Recall F1-Score

Trained on clear
images

car 0.76 0.77 0.76 0.78 0.75 0.76
person 0.65 0.83 0.73 0.64 0.62 0.63
traffic light 0.54 0.57 0.56 0.37 0.49 0.42
traffic sign 0.68 0.56 0.61 0.55 0.52 0.54

Trained on clear
and snow images

car 0.81 0.78 0.80 0.84 0.78 0.81
person 0.69 0.80 0.74 0.63 0.69 0.66
traffic light 0.46 0.67 0.54 0.36 0.57 0.44
traffic sign 0.72 0.55 0.62 0.63 0.55 0.59

Semantic domain
adaptation: Day

and synthetic
night images

car 0.86 0.87 0.94 0.91 0.90 0.91
person 0.72 0.83 0.77 0.67 0.78 0.72
traffic light 0.74 0.72 0.73 0.68 0.71 0.69
traffic sign 0.81 0.75 0.78 0.81 0.74 0.77

Table 4: Performance of MobileNetV2 classification model trained under three different settings on
snow and clear Images. The F1-score values represent the performances of these deep classifiers
under the two conditions; higher the F1-score, the better is the model. Observe that the model trained
on original clear and synthetic snow images outperforms the models trained on original images across
all four object classes.

Classes Original Day Original Night Synthetic Night Original Clear Original Snow Synthetic Snow

Cars 25421 17658 23669 27622 11134 18967
Person 9178 4378 7245 3624 539 2207

Traffic Sign 15786 10348 13468 10660 2224 5324
Traffic Light 8234 3383 7357 2700 613 2178

Table 5: Dataset composition used for training the classifiers. Note the data imbalance in individual
classes with much fewer nighttime/snowy images. Since we use a conditional GAN for data aug-
mentation, we can leverage images with labels of fog, overcast and partly cloudy labels of the BDD
dataset and generate synthetic snow images.
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